DEVELOPMENT OF A PORTABLE MASS SPECTROMETER FOR HYDROLOGICAL APPLICATIONS

H.Q. Hoang, V. Lopez, D. Dowsett, T. Wirtz, J.J. McDonnell and L. Pfister

HEMS, Baltimore, 13-16 Sept 2015

Stable isotopes in hydrology

Geochemical tracers

Spatial origin of water & water flowpaths

Stable isotopes

& event/ pre-event water separations

Stable isotopes in hydrology

Grab sampling (> daily)

Automatic samplers (event-based, streamflow triggered, > 30 minutes) Need for high-frequency measurements directly from the field

Isotope-ratio measurement techniques in water

Isotope-ratio mass spectrometry in water

Direct injection of water

- ✓ Fast
- ✓ Inaccurate
- ✓ Absorption, recombination

Water molecules react with ions \rightarrow formation of H_3O^+

Inert gas as carrier of isotopic signature

- ✓ Accurate
- ✓ Lab-based condition
- ✓ Time consumed

Converting H₂O (liquid) into H₂ (gas) and CO₂ (gas)

Portable mass spectrometer with high measurement frequency but lower precision

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

Field deployable mass spectrometer for hydrology application

1

2

3

4

5

Portable

Deployable in the field (5-35° C, minimum calibration)

High sampling frequency (10-15 minutes)

Low energy consumption (<100W, battery life of a few days)

Mass resolution M/ Δ M > 1500 to eliminate interferences

Instrumental concept

MIMS
-Nafion membrane

nbrane impact ionisation (El source)

Magnetic sector mass analyzer

- Parallel acquisition
- High transmission

Focal plane detector
Slit detector

- Interface board
- Control software

\$chematic layout (ion trajectories in Lorent-3EM)

- ✓ Spherical electrostatic sector
- ✓ Magnetic shunt
- ✓ Magnetic sector
- ✓ Beam energy of 5KV
- ✓ Size of the analyzer can be scaled up or down

Design parameters

- Magnetic shunt
 - ✓ Inclined angle between the shunt and the magnetic sector
- Magnetic sector
 - ✓ Two different focal planes

Design parameters

- Magnetic shunt
 - ✓ Inclined angle between the shunt and the magnetic sector
- Magnetic sector°
 - ✓ Two different focal planes

Prototype

- Detector position adapting to temperature change
- Measurement frequency: 20 mins

Prototype

- Size: 72x27x17 cm (only the vacuum box)
- Weight: 50 kg including the pump and electronics

LIST.lu

Instrument performance

Mass spectrum of a mixture of ammonia + water + air

Mass resolving power

Mass resolving power of above 2000 \rightarrow enough to resolve ¹⁸OH⁺ from H₃O⁺ and ²H⁺ from H₂⁺

Isotope ratio measurement

Ratio of ¹⁸OH+ and ¹⁶OH+ for isotope ratio of ¹⁸O

Ratio of D+ and H₂+ for isotope ratio of Deuterium

Isotope ratio measurement

Reproducibility of ¹⁸O measurement

- 5 standard water samples
- 20 measurements for each sample
- Different times with the same ionization current and pressure
- →The precision of the measurements varies between 1 to 2.5‰
- →The precision of the LGR (Los gatos) laser absorption spectrometry instrument in LIST ranges between 0.1-0.8 ‰

Isotope ratio of rainfall samples

Callibration curve

Isotope ratio of rainfall samples

Other applications

Nitrate in water

- Need to convert nitrate into ammonia (electro-chemical)
- Detection limit of about ppm

Thank you!